Spectroscopic characterization of Fe-doped synthetic chrysotile by EPR, DRS and magnetic susceptibility measurements.
نویسندگان
چکیده
Fe-doped synthetic geomimetic chrysotile nanocrystals represent a reference standard to investigate the health hazard associated with asbestos fibers and constitute interesting inorganic nanotubes for specific technological applications in light harvesting systems, optoelectronics and photonics. As the fiber toxicity is catalyzed by iron ions in specific crystallographic sites and the mechanical behaviour of synthetic chrysotile nanotubes is strongly affected by the iron doping extent, the characterization of Fe substitution to Mg and/or Si sites in the chrysotile structure appears highly important. By EPR, DRS spectroscopic analyses and magnetic investigations, Mg and/or Si ion replacement by Fe(3+) in a synthetic geomimetic chrysotile structure has been investigated. The results highlight that, as a function of the Fe doping extent and of the Fe doping process, iron can replace both Mg and Si sites. The contemporary iron substitution into the octahedral and tetrahedral sheets is associated with the presence of both of isolated Fe(3+) centres in high-spin 3d(5) configuration (S = 5/2, (6)A(1)((6)S)) in O(h) and T(d) symmetry and of intra-lattice clustered species. Increasing the Fe doping extent increases the concentration of aggregated species, while magnetic susceptibility confirms a paramagnetic anisotropy. The results allow to define the opportunity of using or not metallic Fe during the synthesis to obtain doped chrysotile nanocrystals with tailored morphological and structural properties suitable as a reference to study asbestos toxicity and apt to prepare new inorganic nanotubes and quantum wires for innovative technological applications.
منابع مشابه
Biologically vital metal-based antimicrobial active mixed ligand complexes: synthesis, characterization, DNA binding and cleavage studies
Few novel cobalt(II) and copper(II) complexes [M(fmp)3]Cl2, [M(fmp)(bpy)2]Cl2,[M(fmp)(phen)2]Cl2 and [M(fmp)(phen)(bpy)]Cl2 (fmp = 3-furan-2-ylmethylene-pentane-2,4-dione, phen = 1,10-phenanthroline, bpy = 2,2'-bipyridine) have been synthesized andcharacterized by elemental analyses, molar conductance, magnetic susceptibility measurements,IR, electronic, EPR, mass spectra and cyclic voltammetri...
متن کاملAdsorption of bovine serum albumin onto synthetic Fe-doped geomimetic chrysotile.
Synthetic stoichiometric and Fe-doped geomimetic chrysotile nanocrystals represent a reference standard to investigate the health hazard associated with mineral asbestos fibres. Experimental evidence suggests that the generation of reactive oxygen species and other radicals, catalysed by iron ions at the fibre surface, plays an important role in asbestos-induced cytotoxicity and genotoxicity. I...
متن کاملSYNTHESIS, STRUCTURAL AND SPECTROSCOPIC CHARACTERIZATION OF A NEW Cr(III)-QUINIC COMPLEX. RELEVANCE TO AQUEOUS TOXICITY OF CHROMIUM
In the present study, a new complex Cr(III)-quinic was synthesized. The new species was characterized by elemental analysis, spectroscopic, structural, thermal, EPR and magnetic susceptibility studies. Detailed aqueous speciation studies in the Cr(III)-quinic system suggest the presence of a number of species with distinct structural properties related to the ones encountered in the synthetic c...
متن کاملPhotocatalytic removal of the antibiotic Ciprofloxacin from aqueous solutions using Fe-dopedTiO2@Fe3O4 magnetic nanoparticles
Background & Aim: Antibiotics are stable compounds with low biodegradability that are generally not removable by conventional wastewater treatment processes. The aim of this study was to investigate the ability of Fe-doped TiO2@Fe3O4 magnetic nanoparticles in the presence of ultraviolet irradiation to photocatalytic removal of ciprofloxacin from aqueous solutions. Methods: The sol-gel method ...
متن کاملRoom Temperature Ferromagnetism in Cobalt Doped ZnO Nanoparticles
In this work we report synthesis and magnetic characterization of cobalt doped ZnO nanoparticles (with different percent of doped cobalt oxide). Synthesis of the materials was carried out at room temperature by polyacrylamide-gel method, using zink sulfate and cobalt nitrate as source materials, acrylamide as monomer and N,N-methylene bisacrylamide as a lattice reagent. Characterization of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2010